
Journal of Systems Science and Information

Jun., 2020, Vol. 8, No. 3, pp. 273–290

DOI: 10.21078/JSSI-2020-273-18

Strategic Behavior and Optimization in an Unobservable Constant

Retrial Queue with Balking and Set-Up Time

Linlin WANG
School of Science, Nanjing University of Science and Technology, Nanjing 210094, China

E-mail: wanglinlin502@163.com

Liwei LIU
School of Science, Nanjing University of Science and Technology, Nanjing 210094, China

E-mail: lwliu@njust.edu.cn

Zhen WANG
School of Science, Nanjing University of Science and Technology, Nanjing 210094, China

E-mail: 1721157913@qq.com

Xudong CHAI
School of Science, Nanjing University of Science and Technology, Nanjing 210094, China

E-mail: 690752860@qq.com

Abstract An M/M/1 constant retrial queue with balking customers and set-up time is considered.

Once the system becomes empty, the server will be turned down to reduce operating costs, and it

will be activated only when there is a customers arrives. In this paper, the almost unobservable

case is studied, in which the information of the queue length is unavailable, whereas the state of the

server can be obtained. Firstly, the steady state solutions are derived and the individual equilibrium

strategies are analyzed. In addition, social optimization problems, including cost analysis and social

welfare maximization are investigated by using the PSO algorithm. Finally, by appropriate numerical

examples, the sensitivity of some main system parameters is shown.
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1 Introduction

In recent years, retrial queueing systems have been widely adopted to model LAN (local area
networking) systems. Because in a LAN, a job that can not be disposed at its arrival instant
will be translated again in a later time, which consistents with the key thought of retrial queues.
Assuming that the waiting space is finite, when the server is idle, new arriving customer will
take up the server and accept service immediately. Otherwise if the server is in other states,
then arriving customers have to leave the server, but they can join a virtual retrial orbit and
wait for retry. So far, there has been vast literature on retrial queuing system. Falin and
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Templeton[1] summarized the main methods and results of previous research on retrial queuing
system. For interested readers, more details can be found in Artalejo[2], Gomez-Corral[3] and
Artalejo[4]. It is worth noting that in the retrial queuing literatures, most of the articles assume
that the retrial intervals of customers are independent and follow the exponential distribution
with the parameter of θ. Under this strategy, the total retrial rate changes with the number of
customers in the orbit. While in our model, customers in the orbit follow the first come, first
served discipline (FCFS), only the head customer can retry for service after a random time,
therefore the retrial rate becomes a constant and is independent of the queue length. Fayolle[5]

first came up with the constant retrial policy to model a telephone exchange system, Later
researches can be seen in Falin[6], Artalejo, Gomez-Corral[7].

During the past two decades, the game theory has been introduced into the queueing sys-
tems. Various queueing models have been studied from the perspective of economics. In
equilibrium literature, Naor[8] first investigated an observable M/M/1 queue under the linear
reward-cost structure. He gave the equilibrium balking strategy and proposed that customers
could enter the system with social optimal strategy if charged tolls. Edelson and Hildebrand[9]

studied the same model under the assumption that the new arrival customers could not observe
the system queue length. Subsequently, many researchers devoted to study and generalize the
queueing model, and achieved more results.

In addition, for the set-up time, it was first studied from an economic view by Burnetas
and Economou[10] as a vacation policy. For the sake of costs reduction and energy saving,
when the system becomes empty, the server should be turned down and won’t be restarted
until a customer arrives. Considering to the reality, the opening time of the server should not
be ignored. Therefore, regarding the set-up time as a random time subjected to exponential
distribution is widely accepted. Zhang and Wang[11] studied an M/G/1 retrial queue with
reserved idle time and setup time. They derived the optimal pricing strategies from the view of
the social planner and the server, respectively. However, they take consideration of the general
retrial rate, and assume that the information of the queue length and the server’s state are
unobservable, which are quite different from this paper. Recent results of queueing systems
with set-up time can be seen in Yutaka, Yoshitaka, Yutaka, et al.[12].

The main contribution of this article is the introduction of the set-up time to a constant
retrial queue. After the set-up time policy is added, the model becomes more realistic and
is firstly studied from an economic view. Closed server will only be activated by an arriving
customer and will go through a period of set-up time. Under the almost unobservable condi-
tion, we not only derive the customers’ equilibrium strategies, but also investigate the social
optimization problems respectively from the standpoints of the service provider and the social
manager, so that each party in the game can take specific measures to achieve their own goals.

The rest content of this paper can be summarized as follows. Section 2 presents the investi-
gated model and corresponding assumptions. In Section 3, we study the steady state solutions
and derive some main system performance measures. In Section 4, we get the individual equi-
librium arrival rates by analyzing the properties of the customers’ utility function. Section 5
gives the expressions of the social welfare and the cost function. Due to the complexity of their
formulas, the Particle Swarm Optimization algorithm (PSO) is introduced to find the socially
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optimal arrival rates and the cost-optimal arrival rates. Section 6 shows the results of the
numerical examples and Section 7 concludes this paper.

2 Model Description

In this section, we consider a constant retrial queue with balking and set-up time. Potential
primary customers arrive in a Poisson process with rate Λ. Assuming that there is no waiting
space in front of the server, an arriving customer who finds the server idle will take up it and
receive service immediately, otherwise he could choose to enter the “virtual” retrial orbit waiting
for retry or to balk, depending on his expected net payoff. Once a service is finished, only the
head customer in the orbit can begin to request for service. The retrial time is exponentially
distributed with rate θ. If a new customer arrives during the retrial time, he will interrupt
the process and receive service at once. The service times for customers (both external and
repeated) are independent and exponentially distributed with rate μ.

Every time the system becomes empty, the server will be turned down and won’t be restarted
until there is a customer arrives. Once activated, the server will go through a random opening
time subjected to exponential distribution with parameter α. The customer who activated the
server will automatically enter the retrial orbit and become the head of the retrial queue. It is
assumed that the interarrival times, service times, retrial times and set-up times are mutually
independent.

Assuming that every customer gains a profit of R units after completing the service, while
has to pay for a waiting cost of C per unit time for remaining in the system. All customers are
indistinguishable and rational to pursue the maximization of their own profits, and they have
the rights to determine whether or not to join at their arrival instants, which forms a game
among them. Explicitly, customers tend to enter when they gain more from the service than
they pay for the cost, otherwise they prefer to balk. On the other hand, if the reward equals to
the cost, it doesn’t matter for customers whether to enter or to stop. To ensure that a customer
who arrives during the idle period will always choose to enter, we assume that

R >
C

μ
. (2.1)

In this paper, the almost unobservable case is investigated. We use the pair {(I(t), N(t)), t ≥
0} to describe the system at time t, where I(t) indicates the state of the server and N(t) shows
the number of customers in the orbit. Explicitly,

I(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, if the server is idle,

1, if the server is busy,

2, if the server is in set-up time.

(2.2)

Then {(I(t), N(t)), t ≥ 0} is a two-dimensional continuous time Markov chain, and its state
space is {(i, j), i = 0, 1, 2; j ≥ 0}. According to the above analysis, the joining probabilities
of arriving customers depend on I(t). Define λi = Λqi, i = 0, 1, 2, where qi is the joining
probability that specifies a general strategy, and λi becomes the effective arrival rate at state
i, which reflects the customer’s real demand rate for the service.
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Because of the assumption (2.1), we have that λ0 = Λ. In the following analysis, we
only need to study how do customers make decision at state I(t) = 1, 2, and we focus on
the corresponding effective arrival rates λ1 and λ2. According to Economou & Kanta[13], the
steady-state condition of this model is given by

ρ =
λ1(Λ + θ)

μθ
< 1. (2.3)

The transition rate diagram of this model is shown in Figure 1.

n

n

Figure 1 Transition rate diagram of a retrial queue with balking and set-up time

3 Steady State Solutions

For the convenience to analyze the equilibrium strategies, we first study the steady state
solutions. Suppose that the system is stable and let p(i, j) be the steady-state probability of
state (i, j), then we can easily get the balance equations:

(λ2 + α)p(2, 1) = Λp(0, 0), (3.1)

(λ2 + α)p(2, n) = λ2p(2, n − 1), n ≥ 2, (3.2)

Λp(0, 0) = μp(1, 0), (3.3)

(Λ + θ)p(0, n) = μp(1, n) + αp(2, n), n ≥ 1, (3.4)

(λ1 + μ)p(1, 0) = θp(0, 1), (3.5)

(λ1 + μ)p(1, n) = Λp(0, n) + λ1p(1, n − 1) + θp(0, n + 1), n ≥ 1. (3.6)

The generating function technique is used to solve the equations. Define the partial gener-
ating functions as:

P0(z) =
∞∑

n=0

znp(0, n), P1(z) =
∞∑

n=0

znp(1, n), P2(z) =
∞∑

n=1

znp(2, n). (3.7)

Then we can get the following results.

Theorem 1 For the almost unobservable M/M/1 retrial queue with balking and set-up
time, the probabilities that the server is idle, busy or in set-up period are, respectively given by

P0(1) =
Λλ2μ + αμθ − Λλ1α − λ1αθ

αμθ − Λλ1α − λ1αθ
p(0, 0), (3.8)
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P1(1) =
Λλ2(Λ + θ)

αμθ − Λλ1α − λ1αθ
p(0, 0), (3.9)

P2(1) =
Λ
α

p(0, 0), (3.10)

where

p(0, 0) =
αμθ − Λλ1α − λ1αθ

Λμθ − Λ2λ1 − Λλ1θ + Λλ2μ + αμθ − Λλ1α − λ1αθ + Λ2λ2 + Λλ2θ
. (3.11)

Proof Multiplying Equations (3.1)∼(3.2) by zn and summing up over all n, we derive the
following equation:

(λ2 + α)P2(z) = λ2zP2(z) + Λp(0, 0). (3.12)

Similarly, from Equations (3.3)∼(3.6), we have that

(Λ + θ)P0(z) − θp(0, 0) = μP1(z) + αP2(z), (3.13)

(Λ + μ)P1(z) = ΛP0(z) − Λp(0, 0) + λ1zP1(z) +
θ

z
P0(z) − θ

z
p(0, 0). (3.14)

By some algebraic manipulations, we use p(0, 0) to express Pi(z), i = 0, 1, 2 as:

P2(z) =
Λp(0, 0)

α + λ2(1 − z)
, (3.15)

P1(z) =
Λ + θ

z

μ + λ1(1 − z)
[P0(z) − p(0, 0)], (3.16)

P0(z) =
α

Λ + θ − μ(Λ+θ/z)
μ+λ1(1−z)

P2(z) +
θ − μ(Λ+θ/z)

μ+λ1(1−z)

Λ + θ − μ(Λ+θ/z)
μ+λ1(1−z)

p(0, 0). (3.17)

Taking (3.15) into (3.17), then we have,

P0(z)

=
Λα[μ+λ1(1−z)]−μ(Λ+θ/z)[α+λ2(1−z)]+θ[α+λ2(1−z)][μ+λ1(1−z)]

[α+λ2(1−z)]{(Λ+θ)[μ+λ1(1−z)]−μ(Λ+θ/z)} p(0, 0). (3.18)

Noticed that, P0(z) and P1(z) are both indeterminate forms when z = 1, so we use the
L’ Hospital rule to solve them and we have (3.8)∼(3.10). Taking them into the normalization
condition: P0(1) + P1(1) + P2(1) = 1, we derive p(0, 0) as given by (3.11).

Based on the above proof process, we can immediately derive P ′
i (z), i = 0, 1, 2 by differen-

tiating (3.15), (3.16) and (3.18). Letting z = 1, we find that

P ′
0(1) =

μ

Λ + θ
P ′

1(1) +
Λλ2

α(λ + θ)
· p(0, 0), (3.19)

P ′
1(1) =

[ −Λλ2θ

(αμθ−Λλ1α−λ1αθ)
+

(Λ+θ)(Λλ2
2μθ+Λλ2αμθ−Λλ1λ

2
2θ−Λ2λ1λ

2
2)

(αμθ−Λλ1α−λ1αθ)2

]
p(0, 0), (3.20)

P ′
2(1) =

Λλ2

α2
p(0, 0). (3.21)

P ′
i (1), i = 0, 1, 2 can be considered as the contribution of state i to the expected number of

customers in the orbit. As the three states are connected, customers accumulating in a single
state will affect the other states.
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Next we turn our attention to investigate the mean sojourn time( including service time) of
a singled out customer. Assuming that an arriving customer decides to enter the system, and
becomes the jth customer in the orbit. We denote the expected sojourn time of the specific
customer at different states as Ti(j), i = 0, 1, 2. Then we obtain Ti(j), i = 0, 1, 2 in the following
analysis.

Lemma 1 For the almost unobservable M/M/1 retrial queue with balking and set-up
time, the mean sojourn times of the jth customer in the orbit at steady state I(t) = 0, 1, 2 are,
respectively given by

T0(j) = j

(
1
θ

+
Λ + θ

μθ

)
, (3.22)

T1(j) = j

(
1
θ

+
Λ + θ

μθ

)
+

1
μ

, (3.23)

T2(j) = j

(
1
θ

+
Λ + θ

μθ

)
+

1
α

. (3.24)

Proof Through state transition analysis, we have the following equations:

T1(0) =
1
μ

, (3.25)

T0(j) =
1

Λ + θ
+

Λ
Λ + θ

T1(j) +
θ

Λ + θ
T1(j − 1), (3.26)

T1(j) =
1

λ1 + μ
+

λ1

λ1 + μ
T1(j) +

μ

λ1 + μ
T0(j), (3.27)

T2(j) =
1

λ2 + α
+

λ2

λ2 + α
T2(j) +

α

λ2 + α
T0(j). (3.28)

Combining equations (3.26) and (3.27), we have the recursive form of T1(j), j ≥ 1,

T1(j) = T1(j − 1) +
1
θ

+
Λ + θ

μθ
, j ≥ 1. (3.29)

Considering to (3.25), we have that,

T1(j) = T1(0) + j

(
1
θ

+
Λ + θ

μθ

)
= j

(
1
θ

+
Λ + θ

μθ

)
+

1
μ

, j ≥ 0. (3.30)

Taking the expression of T1(j) into (3.26), we derive T0(j) as in (3.22). Furthermore, we
have T2(j) by substituting T0(j) in (3.28).

For a non-specific new arriving customer, the situation is different, but we can also get the
mean sojourn time with the help of Lemma1. Denote Wi, (i = 0, 1, 2) as the mean sojourn times
of a new arriving customer who finds that I(t) = 0, 1, 2. We have the following conclusion.

Theorem 2 For the almost unobservable M/M/1 retrial queue with balking and set-up
time, the mean sojourn times of a new arriving customer who finds that the server is in idle,
busy or set-up period are, respectively given by

W0 = 1/μ, (3.31)

W1 =
Λ + μ + θ

μθ

(
λ2

α
+

μθ

μθ − Λλ1 − λ1θ

)
+

Λ + θ

μθ
+

Λ
θ(Λ + θ)

, (3.32)
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W2 =
Λ + μ + θ

μθ
· λ2

α
+

Λα + αμ + αθ + μθ

αμθ
. (3.33)

Proof First of all, any customer arrives at idle state will enter the system and immediately
be served, so the sojourn time equals to the mean service time 1

μ .
What needs to be concerned is that in busy or set-up period cases. Assume that the server

is busy and there are already k customers in the orbit, if a new customer decides to enter the
system, he will be the (k + 1)th customer in the orbit, whose mean sojourn time is T1(k + 1).
Using the PASTA property, we denote P (k|1) = p(1,k)∑∞

n=0 p(1,k) = p(1,k)
P1(1)

, k ≥ 0 as the conditional
probability that there are k customers in the orbit, given that the server is busy. According to
the total probability formula, we derive that,

W1 =
∞∑

k=0

T1(k + 1)P (k|1)

=
∑∞

k=0 T1(k + 1)p(1, k)
P1(1)

=

∑∞
k=0[(k + 1)(1

θ + Λ+θ
μθ ) + 1

μ ] · p(1, k)

P1(1)

=

∑∞
k=0 k(1

θ + Λ+θ
μθ )p(1, k)

P1(1)
+

∑∞
k=0(

1
θ + Λ+θ

μθ + 1
μ) · p(1, k)

P1(1)

=
(

1
θ

+
Λ + θ

μθ

)
· P ′

1(1)
P1(1)

+
1
θ

+
Λ + θ

μθ
+

1
μ

,

where P ′
1(1)

P1(1) can be computed by (3.9) and (3.20) as

P ′
1(1)

P1(1)
= − θ

Λ + θ
+

λ2μθ + αμθ − λ1λ2θ − Λλ1λ2

αμθ − Λλ1α − λ1αθ
.

Combining the two equations and by some algebraic computation, we get the expression of
W1 as in (3.32). Meanwhile, using the same argument, we obtain that,

W2 =
∞∑

k=1

T2(k + 1)P (k|2) =
(

1
θ

+
Λ + θ

μθ

)
· P ′

2(1)
P2(1)

+
1
θ

+
Λ + θ

μθ
+

1
α

=
(

1
θ

+
Λ + θ

μθ

)
· λ2

α
+

1
θ

+
Λ + θ

μθ
+

1
α

,

which can be converted to (3.33).
Theorem 2 reflects an important fact that W2 only depends on λ2. Although W1 is related

to the effective arrival rates both in busy and set-up time. As long as λ2 is determined, W1 is
considered to be subject to λ1 only. This can be helpful for the following equilibrium analysis.

4 Individual Equilibrium

In this section, we aim to derive the individual equilibrium strategies in different states.
Since the self-optimizing arriving customers are indistinguishable, and have the right to decide
whether to join or not, it is reasonable to regard them as players in a symmetric game, whose
strategies are balking or joining. For simplicity, a Nash equilibrium strategy is the one that the
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tagged customer has to adopt to maximize his benefit when all others take the same strategy.
According to the game theory, there exists an equilibrium joining strategy. That is to say,
the equilibrium arrival rates can be specified. According to the assumption of the reward-cost
structure, we have the expression of the customers’ benefit functions in state I(t) = 1, 2 as:

S1(λ1, λ2) = R − CW1

= R − C

[
Λ + μ + θ

μθ

(
λ2

α
+

μθ

μθ − Λλ1 − λ1θ

)
+

Λ + θ

μθ
+

Λ
θ(Λ + θ)

]
, (4.1)

S2(λ2) = R − CW2 = R − C

[
Λ + μ + θ

μθ
· λ2

α
+

Λα + αμ + αθ + μθ

αμθ

]
. (4.2)

Then we have the following results.

Theorem 3 For the almost unobservable M/M/1 retrial queue with balking and set-up
time,

1) when the server is in set-up period, the individual equilibrium arrival rate is given by

λe
2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if
R

C
≤ 1

θ
+

Λ + θ

μθ
+

1
α

,

λ′
2, if

1
θ

+
Λ + θ

μθ
+

1
α

<
R

C
≤ Λ + μ + θ

μθ
· Λ
α

+
1
θ

+
Λ + θ

μθ
+

1
α

,

Λ, if
R

C
>

Λ + μ + θ

μθ
· Λ
α

+
1
θ

+
Λ + θ

μθ
+

1
α

.

(4.3)

2) when the server is busy, there are three cases, and the individual equilibrium arrival rates
are given as:

(a) When R
C ≤ 1

θ + Λ+θ
μθ + 1

α , i.e., λe
2 = 0,

λe
1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if
R

C
≤ Λ + μ + θ

μθ
+

Λ + θ

μθ
+

Λ
θ(Λ + θ)

,

λ′
11, if

Λ + μ + θ

μθ
+

Λ + θ

μθ
+

Λ
θ(Λ + θ)

<
R

C
≤ Λ + μ + θ

μθ − Λ2 − Λθ
+

Λ + θ

μθ
+

Λ
θ(Λ + θ)

,

Λ, if
R

C
>

Λ + μ + θ

μθ − Λ2 − Λθ
+

Λ + θ

μθ
+

Λ
θ(Λ + θ)

.

(4.4)
(b) When 1

θ + Λ+θ
μθ + 1

α < R
C ≤ Λ+μ+θ

μθ · Λ
α + 1

θ + Λ+θ
μθ + 1

α , i.e., λe
2 = λ′

2,

λe
1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if
1
α

≤ Λ + θ

μθ
+

Λ
θ(Λ + θ)

,

λ′
12, if

Λ + θ

μθ
+

Λ
θ(Λ + θ)

<
1
α

≤ Λ + μ + θ

μθ − Λ2 − Λθ
+

Λ
θ(Λ + θ)

− 1
θ
,

Λ, if
1
α

>
Λ + μ + θ

μθ − Λ2 − Λθ
+

Λ
θ(Λ + θ)

− 1
θ
.

(4.5)
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(c) When R
C > Λ+μ+θ

μθ · Λ
α + 1

θ + Λ+θ
μθ + 1

α , i.e., λe
2 = Λ,

λe
1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if
R

C
≤ Λ2 + Λμ + Λθ

αμθ
+

Λ + μ + θ

μθ
+

Λ + θ

μθ
+

Λ
θ(Λ + θ)

,

λ′
13, if

Λ2 + Λμ + Λθ

αμθ
+

Λ + μ + θ

μθ
+

Λ + θ

μθ
+

Λ
θ(Λ + θ)

<
R

C
,

and
R

C
≤ Λ(Λ + μ + θ)

αμθ
+

Λ + μ + θ

μθ − Λ2 − Λθ
+

Λ + θ

μθ
+

Λ
θ(Λ + θ)

,

Λ, if
R

C
>

Λ(Λ + μ + θ)
αμθ

+
Λ + μ + θ

μθ − Λ2 − Λθ
+

Λ + θ

μθ
+

Λ
θ(Λ + θ)

.

(4.6)

Specifically, λ′
2 is the unique root of the equation R − CW2(λ2) = 0, and is given by

λ′
2 =

(
R

C
− 1

θ
− Λ + θ

μθ
− 1

α

)
· αμθ

Λ + μ + θ
. (4.7)

λ′
1i, i = 1, 2, 3, are respectively the roots of the three formulas : S1(λ1, 0) = 0; S1(λ1, λ

′
2) = 0;

S1(λ1,Λ) = 0, and are given by

λ′
11 =

μθ

Λ + θ
− Λ + μ + θ

Λ + θ

(
R

C
− Λ + θ

μθ
− Λ

θ(Λ + θ)

)−1

, (4.8)

λ′
12 =

Λμθ + μθ2 − Λαμ − Λ2α − 2Λαθ − αθ2

(Λ + θ)(Λ + α + θ)
, (4.9)

λ′
13 =

μθ

Λ + θ
− Λ + μ + θ

Λ + θ

[
R

C
− Λ(Λ + μ + θ)

αμθ
− Λ + θ

μθ
− Λ

θ(1 + θ)

]−1

. (4.10)

Proof Similar to the above discussion, customers have to measure the losses and gains to
make the decision on whether to join or not.

1) If a customer observes that the server is in set-up period upon arriving, then his joining
strategy is dependent on his benefit function S2(λ2). It can be intuitively found from (4.2) that
S2(λ2) is decreasing with λ2, which leads an ATC( avoid the crowd) behavior of the customer,
thus there exists a unique equilibrium arrival rate λe

2 (see Hassin and Haviv[14]). To derive λe
2,

we have the following discuss:
(i) When S2(0) ≤ 0, i.e., R

C ≤ 1
θ + Λ+θ

μθ + 1
α , then S2(λ2) ≤ 0 in every λ2 ∈ [0,Λ]. In this

case, customers’ benefits are always negative, hence nobody wants to enter the system, so there
forms a equilibrium λe

2 = 0, which is the first branch of (4.3).
(ii) When S2(0) > 0 and S2(Λ) ≤ 0, i.e., 1

θ + Λ+θ
μθ + 1

α < R
C ≤ Λ+μ+θ

μθ · Λ
α + 1

θ + Λ+θ
μθ + 1

α ,
since S2(λ2) strictly decreases with λ2, there is a unique root of S2(λ2) = 0 in (0,Λ], denoted
by λ′

2, which is exactly the equilibrium point. Because if λ2 > λ′
2, new arriving customers

will all choose to balk since their benefits are negative, thus their strategies are equal to zero.
This is against to the equilibrium property that all customers adopt the same strategy. On the
other hand, the arrival rate which is less than λ′

2 will lead an “all joining” strategy and finally
converge to λ′

2, too. Therefore, λ′
2 is the unique equilibrium point of this branch.

(iii) When S2(Λ) > 0, i.e., R
C > Λ+μ+θ

μθ · Λ
α + 1

θ + Λ+θ
μθ + 1

α , the situation is completely
opposite to (a), and all customers choose to enter since their benefits are always positive, which
leads to a equilibrium of λe

2 = Λ. This forms the last branch of (4.3).
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2) Theorem 2 tells that, once λ2 is determined, W1 is only dependent with λ1, so as the
customers’ benefit function in busy state, which can be remarked as S1(λ1). Similarly, it can
be found from (4.1) that S1(λ1) is decreasing with λ1 when λ2 is settled. Thus, there exists
three cases according to the value of λ2 in (4.3), which respectively correspond to (a), (b),
(c) in Theorem 3. Proceeding the analysis as before, the proof of (4.4), (4.5) and (4.6) can
be done, and λ′

11, λ′
12, λ′

13 are, respectively derived by solving the equations: S1(λ1, 0) = 0;
S1(λ1, λ

′
2) = 0; S1(λ1,Λ) = 0.

There is one thing to notice in the above analysis: The process of deriving λe
1 has pre-

conditions in the three cases. In each case, we discuss three branches and present λe
1 as in

(4.4)∼(4.6) for brevity and clarity. However, when there is a conflict between the precondition
and the branch condition, that branch will be naturally canceled.

5 Social Optimization

In this section, we seek for social optimization for the social planner and the service provider,
respectively, since they are out of different considerations. For the former, the goal is to
maximize social welfare, while for the latter, reducing the total cost is the emphases.

5.1 Social Welfare

First, we investigate the social welfare, which is the sum of all the customers’ expected net
benefits. The expression of the social welfare is given by

S(λ1, λ2) = Λ
(

R − C

μ

)
P0(1) + λ1(R − CW1)P1(1) + λ2(R − CW2)P2(1)

= Λ
(

R − C

μ

)
· Λλ2μ + αμθ − Λλ1α − λ1αθ

Λμθ − Λ2λ1 − Λλ1θ + Λλ2μ + αμθ − Λλ1α − λ1αθ + Λ2λ2 + Λλ2θ

+λ1

[
R − C

(
Λ + μ + θ

μθ
· λ2

α
+

Λ + μ + θ

μθ − Λλ1 − λ1θ
+

(Λ + θ)2 + Λμ

μθ(Λ + θ)

)]

× Λλ2(Λ + θ)
Λμθ − Λ2λ1 − Λλ1θ + Λλ2μ + αμθ − Λλ1α − λ1αθ + Λ2λ2 + Λλ2θ

+λ2

[
R − C

(
Λ + μ + θ

μθ
· λ2

α
+

Λα + αμ + αθ + μθ

αμθ

)]

× Λμθ − Λ2λ1 − Λλ1θ

Λμθ − Λ2λ1 − Λλ1θ + Λλ2μ + αμθ − Λλ1α − λ1αθ + Λ2λ2 + Λλ2θ
. (5.1)

The purpose of the social planner is to maximize S(λ1, λ2) by seeking the optimal arrival
rates λ∗

1, λ∗
2, thus we can model the socially optimal problem as maxλ1,λ2∈[0,Λ] S(λ1, λ2). Unfor-

tunately, the expression of S(λ1, λ2) seems especially complex. Through trial and explore, we
have to admit that it’s too difficult to find the analytic solution. However, after consulting the
literatures and analyzing our own model, we find it appropriate to adopt the Particle Swarm
Optimization (PSO) algorithm to derive the numerical solutions.

At the mention of PSO algorithm, the most significant advantage is that it does not require
too much analyticity of the objective function. It is an optimization algorithm based on swarm
intelligence theory. In each iteration search process, Particles in swarm can dynamically adjust
their position and speed by tracking two extremes of swarm: The best solution found by
the particle itself, namely P-best, and the best solution found by the swarm, namely G-best.
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Through multiple iterations, the global optimal solution can be found. The specific process is
presented in numerical examples.

5.2 Cost Analysis

In this subsection, we carry out the cost analysis from the service provider’s point. The
expenses come from many aspects, but can be simplified into the following four items:

Ck= cost of the server per unit time for keeping a customer in the orbit;
Cb= cost of the server per unit time for providing service;
Cs= cost of the server per unit time during the set-up period;
Cθ= cost of the server per unit time for retry.
Therefore we set up the expected total cost function per unit time as

C(λ1, λ2) = Ck[P ′
0(1) + P ′

1(1) + P ′
2(1)] + Cbμ + Csα + Cθθ, (5.2)

where P ′
0(1), P ′

1(1) and P ′
2(1) are given by (3.19)∼(3.21). Aiming to minimize the total cost,

service providers seek for the cost-optimal arrival rates. First we investigate the situation that
customers are not allowed to balk. In this case, we denote that λ1 = λ2 = λ, and the cost
function is written as:

C(λ)

= Cbμ + Csα + Cθθ + Ck · αμθ − λ2α − λαθ

λ2(μ − α) + λθ(μ − α) + αμθ

×
[ −λ2θ(λ+μ+θ)
(λ+θ)(αμθ−λ2α−λαθ)

+
λ2(λ+μ+θ)(λμθ+μθ−λ2θ−λ3)

(αμθ − λ2α − λαθ)2
+

λ2(λ+α+θ)
α2(λ+θ)

]
. (5.3)

Due to the highly nonlinearity and complexity of the expression, we adopt the quadratic
interpolation method to give the numerical solution. The basic idea of quadratic interpolation
method is the continuous use of quadratic polynomials to approximate objective function C(s)
in search intervals, and the minimum point of objective function is gradually approximated by
the minimum point of interpolation polynomial. The main steps are as follows:

Step 0 Set the initial three points s0 < s1 < s2, which satisfy C(s1) < C(s0), and
C(s2) < C(s0). Choose the stopping tolerance as ε = 10−4.

Step 1 If |s2 − s0| ≤ ε, stop and output that s∗ ≈ s1.
Step 2 According to the interpolation formula s = (s1+s2)C(s0)−2(s0+s2)C(s1)+(s0+s1)C(s2)

2(C(s0)−2C(s1)+C(s2))
,

compute s and C(s). If C(s1) < C(s), turn to Step 4; otherwise go to Step 3.
Step 3 If s1 > s, update s2 = s1, s1 = s, C(s2) = C(s1), C(s1) = C(s), and turn to Step

1; if not, update s0 = s1, s1 = s, C(s0) = C(s1), C(s1) = C(s), and then turn to Step 1.
Step 4 If s1 < s, let s2 = s, C(s2) = C(s) and go to Step 1; otherwise let s0 = s,

C(s0) = C(s), and then turn to Step 1.
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Table 1 The quadratic interpolation method in the constant retrial queue with set-up time

Iterations s0 s1 s2 s f(s) Tolerance

0 0.2000 0.8000 1.4000 0.2000 44.9939 1.2000

1 0.7572 0.8000 0.8428 0.7572 44.9172 0.0855

2 0.0637 0.8000 1.5363 0.0637 44.9994 1.4725

3 0.5711 0.8000 1.0289 0.5711 44.9506 0.4579

4 0.3757 0.8000 1.2243 0.3757 44.8764 0.8486

5 1.0166 1.1204 1.2243 1.1204 44.8764 0.2077

6 1.0311 1.0758 1.0758 1.0758 44.8752 0.0447

7 1.0534 1.0758 1.0981 1.0981 44.8754 0.0447

8 1.0758 1.0804 1.0850 1.0804 44.8751 0.0092

9 1.0804 1.0808 1.0812 1.0804 44.8751 0.0008

10 1.0808 1.0808 1.0808 1.0808 44.8751 0.0000

Here we assume that Ck = 1, Cb = 2, Cs = 7, Cθ = 2. Using the software Matlab, after
several iterations, the cost-optimal arrival rate is shown in Table 1 with the error controlled
by ε = 10−4. It is clearly that the solution converges to λ∗

c = 1.0808, and the minimal cost is
C(λ∗

c) = 44.8751.
Now, we turn our attention to the more general case, in which customers are allowed to

balk, then the cost function is given by

C(λ1, λ2) = Cbμ + Csα + Cθθ + Ck · p(0, 0) ·
[ −Λλ2θ(Λ + μ + θ)
(Λ + θ)(αμθ − Λλ1α − λ1αθ)

+
Λλ2(Λ + μ + θ)(λ2μθ + αμθ − λ1λ2θ − Λλ1λ2)

(αμθ − Λλ1α − λ1αθ)2
+

Λλ2

α(Λ + θ)
+

Λλ2

α2

]
. (5.4)

Similar to the analysis of the social welfare, we can also use the PSO algorithm to solve
the optimization problem. The difference is that the cost-optimal arrival rates we seek are
to minimize the objective function. To do this, we just need to add a minus sign before the
objective function C(λ1, λ2) in the corresponding program. Section 6 gives the specific analysis
process.

6 Numerical Examples

In this section, we use numerical experiments to intuitively reflect the impact of main
parameters, i.e., R, α, μ, θ, on the discussed arrival rates respectively. The expressions of the
individual equilibrium arrival rate (λe

1, λe
2) are clearly given by Theorem 3. As for the socially

optimal arrival rate (λ∗
1, λ∗

2) and the cost-optimal arrival rate (λ∗
1c, λ∗

2c), we have to adopt the
PSO algorithm to analyze.
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6.1 To the Individual Equilibrium Arrival Rate

We choose one of the cases in Theorem 3 to explain the influence of the related parameters
on (λe

1, λ
e
2). The graphical representations of the main results are shown in Figures 2∼4.

Firstly, it can be known from Figure 2 that there exists the opposite tendency of λe
1 and λe

2

with regard to α. It’s reasonable that with the decreasing of the set-up time, customers finding
the server at state 2 are more willing to enter the system. On the other hand, as long as the net
benefit is positive, selfish customers will always choose to enter, which results in the congestion
of the system. Therefore, the customer’s arrival rate at busy state decreases correspondingly.
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Figure 2 The individual equilibrium arrival rates λe
1, λe

2 with respect to α when

R = 8, C = 2, Λ = 2, μ = 3, θ = 3
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Figure 3 The individual equilibrium arrival rates λe
1, λe

2 with respect to μ when

R = 8, C = 2, Λ = 10, α = 1, θ = 5
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Figure 4 The individual equilibrium arrival rates λe
1, λe

2 with respect to θ when

R = 8, C = 2, Λ = 10, α = 1, μ = 5

Secondly, it is easily understood that the service rate μ and the retrial rate θ have the same
influence on λe

1 and λe
2. Because the expected waiting time decreases as the decline of the mean

service time or the retrial interval, customers spend less time and expenses in queue, surely the
equilibrium arrival rates will increase. Figures 3∼4 also support this point.

6.2 To the Socially Optimal Arrival Rate

In this section, we adopt the PSO algorithm to investigate the effect of parameters R, α, μ, θ

on the socially optimal arrival rates (λ∗
1, λ

∗
2) and social welfare S(λ∗

1, λ
∗
2) , respectively.

Firstly, it is obvious that the socially optimal arrival rates and the social welfare are all
increase with reward R when R > 7. When R ≤ 7, the socially optimal arrival rate at state 2 is
zero. The reason is that the net payoff of the latter arrivals would result in the loss of the earlier.
From the social manager’s point of view, since the reward is less than the loss, he would rather
there is no customer entering the orbit during set-up time. However, when R is large enough,
the total benefits brought by the customers are always higher than the cost, to maximize the
social welfare, social manager would encourage people to join the system. Therefore, λ∗

1 and
λ∗

2 achieve the maximization Λ gradually. Noticed that, S(λ∗
1, λ

∗
2) is almost increasing linearly

with R due to its structure.
Secondly, Figure 6 shows that both λ∗

1, λ
∗
2 and S(λ∗

1, λ
∗
2) are increasing with parameter α in

general, for the mean sojourn time decreases with set-up time, and the net benefits increases
correspondingly. But compared with λ∗

2, λ∗
1 reached its maximum earlier. The reason is that

the server doesn’t provide service during set-up time. When α < 0.3, the cost incurred by the
customers entering at state 2 is more than the benefit they brought, so at this situation, social
manager prefers there is no enter when the server is setting up. However, since α ≥ 0.3, λ∗

2

increases rapidly to its maximum. Because from then on, the set up time is sufficiently short,
customers arriving at state 2 don’t have to wait so long, and the net benefits exceed their
waiting cost.
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Figure 5 The effect of R on the socially optimal arrival rates λ∗
1, λ∗

2 and social

welfare S(λ∗
1, λ

∗
2) for Λ = 1, μ = 2, α = 3, θ = 3, C = 2
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Figure 6 The effect of α on the socially optimal arrival rates λ∗
1, λ∗

2 and social

welfare S(λ∗
1, λ

∗
2) for Λ = 1, μ = 3, θ = 3, R = 8, C = 2

Finally, similar to the analysis in Section 6.1, λ∗
1 and λ∗

2 have the same trends with respect
to μ and θ, and Figures 7∼8 also show the evidence. So, we only study the impact of the service
rate μ on λ∗

1, λ∗
2 and S(λ∗

1, λ
∗
2). From Figure 7(a) we can see that when μ < 1.8, both λ∗

1 and λ∗
2

are equal to 0. Intuitively, the smaller service rate results in the negative expected benefit of all
the customers. When 1.8 ≤ μ < 1.9, λ∗

1 begin to increase while λ∗
2 is still equal to 0. Because

the positive net payoff of customers arriving after the system activated can offset the negative
effect of customers arriving at set-up period. As μ > 1.9, the service rate is large enough to
avoid the congestion of the system, therefore λ∗

2 also increases gradually to its maximum. Figure
7(b) shows that the social welfare is strictly increasing with respect to μ, since the larger the
service rate, the shorter the mean service time. Therefore customers spend less time in queue
and incur less cost.
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Figure 7 The effect of μ on the socially optimal arrival rates λ∗
1, λ∗

2 and social

welfare S(λ∗
1, λ

∗
2) for Λ = 1, α = 3, θ = 3, R = 8, C = 2
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Figure 8 The effect of θ on the socially optimal arrival rates λ∗
1, λ∗

2 and social

welfare S(λ∗
1, λ

∗
2) for Λ = 1, μ = 3, α = 3, R = 8, C = 2

6.3 To the Cost-Optimal Arrival Rate

Now we focus on the impact of parameters α, μ, θ from the perspective of the service
provider. Through a large number of numerical experiments, we found that compared with
other parameters, when θ takes a smaller value, the total cost C(λ1, λ2) always reaches its
minimum at λ2 = 0. That is because the retrial interval is too large for the server that
will cause congestion of the system. Meanwhile, customers arriving at set-up time will only
aggravate this problem since the server can’t provide service during this period. Therefore,
from the service provider’s point, they would better prevent customers from entering at the
set-up time. But when θ is large enough, it is shown that λ∗

1c, λ∗
2c and C(λ∗

1c, λ
∗
2c) have the

following tendencies.
Figure 9(a) shows that when α < 1, due to the long set-up time, the set-up cost is too high

for the service provider, so the system is better shuttled down. As α increases, the cost-optimal
arrival rates and the total cost all increase accordingly. Because the set-up cost decreases, and
the service provider needs the reward brought by customers to offset the cost. Thus customers
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are encouraged to enter the system and λ∗
1c, λ∗

2c increase. Figure 9(b) shows that as the
number of customers increase, the cost for remaining customers in the orbit rises, and becomes
the dominant player. Therefore, although the set-up cost decrease, the total cost continues to
rise.

Figure 10 shows the tendency of λ∗
1c, λ∗

2c and C(λ∗
1c, λ

∗
2c) about parameter θ (μ has similar

effect). As analyzed before, when θ ≤ 6 the cost-optimal arrival rates are λ1 ∈ [0,Λ], λ2 = 0.
As the increase of θ, the retrial interval gets shorter and the retrial cost decreases. Relatively
the set-up cost is higher. Therefore, to avoid frequent set-up periods, the service provider
should encourage potential customers to enter the system. Accordingly, the trends of λ∗

1c,
λ∗

2c are upward curves. Meanwhile, more customers in the orbit means more keeping cost, so
C(λ∗

1c, λ
∗
2c) increases correspondingly.
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Figure 9 The effect of α on the socially optimal arrival rates λ∗
1c, λ∗

2c and total cost

C(λ∗
1c, λ

∗
2c) for Λ = 1, μ = 3, θ = 9, Cb = 2, Cs = 7, Cθ = 2, Ck = 1

5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1c
*

2c
*

λ
λ

θ

(a)

5 6 7 8 9 10 11 12
30

32

34

36

38

40

42

44

C(
1c
*

2c
* )'λ λ

θ

(b)

Figure 10 The effect of θ on the socially optimal arrival rates λ∗
1c, λ∗

2c and total

cost C(λ∗
1c, λ

∗
2c) for Λ = 1, μ = 3, α = 2, Cb = 2, Cs = 7, Cθ = 2, Ck = 1

7 Conclusion

In this paper, we studied the M/M/1 constant retrial queue with balking and set-up time.
When the server’s state is observable while the queue length is unknown, the individual equi-
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librium strategies and social optimization problems are considered. Firstly, under the stability
condition, we derived the customers’ mean sojourn times for different states, and obtained the
individual equilibrium arrival rates by analyzing the benefit function of arriving customers.
After that, the expression of the social welfare is given. From the point of the social manager,
the optimal arrival rates are presented by PSO algorithm. Furthermore, we carried out cost
analysis from the point of the service provider, and derived the cost-optimal arrival rates in two
cases that whether customers are allowed to balk or not, respectively. Finally, the numerical
examples were given to show the sensitivity of main system performance measures.

To further study, this work can be generalized in different directions. One extension is
to consider the general service times. In addition, the optimal pricing strategies that equate
the customers’ equilibrium arrival rates to the socially optimal arrival rates can be studied.
Furthermore, the equilibrium analysis in other information levels could also be considered.
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